

Objectives

2

- Introduce the "Third dimension of the fire environment"
- Upper air: atmosphere to the tropopause (approx.)
- Fire and atmospheric interactions
- Understand basic storm safety
- Wind profiles and plumes
- Understand stability indexes applicable to fire

WFBS S491 2022

Storm Hazards

5

• Wind

- Strong storm outflow gusts may exceed 150 km/h
 Outflow may lead to new storm cells
- Tornados
- Precipitation
- Large hail
 Flooding: cuts off escape routes? Erosion? Slides?

• Heat Bursts and Pyro-Cbs (both later)

Crew safety due to storms and fire spread

т	hunder	inderstorm comparison				
	Single Cell	Multicell	Supercell	Squall Line		
Environment	Weak/moderat e instability	Strong instability	Strong instability, jet stream, vertical shear	Frontal passage, trough		
Life cycle	< 60 min	Hours	Many hours	Hours to days		
Movement	With upper winds	Erratic?	Right or left?	With airmass and into low		
Precipitation	Rain, small hail	Heavy rain, hail	Heavy rain, large hail	Varied		
Anvil	Single distinct	Multiple	Overshooting top	Multiple		
Wind	Moderate and brief	Erratic, strong gusts	Strong gust fronts, tornado?	Frontal passage: strong winds may continue for hours		
Extent	Small area	Moderate, large in MCC	Moderate	Long line affects large area		

Springbank Airport – Friday Aug 17, 2001						
Time	Temp.	RH(%)	Wind(km/h)	Weather		
2100	21	41	220/08	Smoke		
2200	20	47	230/16	LTG SW		
2300	25	23	200/48	CB South		
2316	-	-	210/60g100	RW		
0000	26	20	200/14	-		
0100	19	38	230/12	-		
Temp a Temp a	Glas at 0502 : at 0517 :	gow Mon 19°C 34°C	itana - Sept 9, [.]	1994		

Stability Indexes

16

- Most are for shower/thunderstorm potential
 - Upper air temperature, humidity, wind
 - K, Totals, SWEAT, Showalter, Lifted, CAPE, ...
 - Interest: weak or strong storms?
- Haines Indexes developed for blow-up fire potential
 - Stability and dryness (moisture) components

Plume vs Wind-dominated fires

27

Vertical profiles help determine if fire will be:

Convection/plume-dominated:

- Frequently display much higher rates of spread than expected under ambient wind conditions
- Wind driven:
 - · Dominated by the energy of the wind field
 - Tend to form smoke plumes rather than 'dynamic' convection columns

Plume-dominated fires

28

• Free convection, high-intensity burning, and rapid spread rates result from:

- Heavy, dry fuel loads
- Unstable airmass
- Surface winds of 30-35 km/h and light winds aloft

 Convection column may collapse or develop strong downdrafts similar to thunderstorms

Difficult to predict fire behavior

- Strong and erratic winds
- Heat transfer to dry fuels

WFBS S491 2022

Some Reading

33

Ralph M. Nelson, Jr. 1993. Byram's Derivation of the Energy Criterion for Forest and Wildland Fires. Int. J. Wildland Fire 3(3): 131-138. https://www.publish.csiro.au/wirpdf/WF9930131. Accessed February 24, 2020.

Read and answer the following questions (see Assignment in Canvas):

- · Why was Byram's approach initially criticized?
- · How is the Froude Number related to Byram's Nc?
- What assumptions are made that may not have been discussed in Byram's original studies?

Convection Number Alternatives

Other papers to look at are:

D. Morvan and N. Frangeih. 2018. Wildland fire behaviour: Wind effect versus Byram's convective number and consequences on the regime of propagation. International Journal of Wildland Fire 2018, 27, 636–641. <u>https://doi.org/10.1071/WF18014</u>. See also Corrigendum. Accessed February 24, 2020.

WFBS \$491 2022

Summary

36

- Atmospheric phenomena can influence fire; fire can influence atmosphere
 - Crew safety depends on weather and fire factors
- Downdraft from thunderstorm or collapsing plume can cause:
 - Erratic fire behaviour
 - Heat burst?
- Vertical atmospheric profiles help determine:
 - Blow-up potential
 - Likelihood of plume-driven fire

