S589: Upper Air Influences Take-home Exercise

WFBS S491 2022

Byram's Convection Number At-home Exercise (1/6)

Fuel type:	C3 FFMC:	93
ISI:	18 BUI:	55
CFB:	1.0 CFL:	1.15 kg/m²
Surface wind:	20 km/h	
Surface temp:	18 °C	

- 1. Calculate the value of N_c for the above conditions.
- 2. A helicopter sounding determines that the wind at 300 m above the fire is 35 km/h. Calculate the convection number at this level.

Byram's Convection Number At-home Exercise (2/6)

3

 $N_{c} = P_{f} / P_{w} = 2gI / \rho C_{p}T(v-R)^{3}$

Fire intensity (kW/m)
Acceleration of gravity (~9.81 m/s ²)
Air density (kg/m ³) at calculation level
Atmospheric pressure
Gas constant for dry air (287.0 J/kgK)
Heat capacity of dry air (~1003.5 J/kgK)
Air temp (°C) at the elevation of the fire
Wind speed (m/s) at some height above the fire
Rate of spread (m/s) = ROS(m/min)/60

 N_c should be calculated at the surface and at several other levels.

Byram's Convection Number4At-home Exercise (3/6) $N_c = P_f / P_w = 2gI / \rho C_p T(v-R)^3$ Units (dimensionless): $\rho = P/R_d T$ If P is unknown, P=101,325 Pa $\frac{m}{s^2} * \frac{kgm^2}{ms^3}$

 $N_c = 2gI / 1.2 C_p T(v-R)^3$

 $\frac{\frac{m}{s^2} * \frac{kgm^2}{ms^3}}{\frac{kgm^2}{s^2kgK} * \frac{kgK}{m^3} * \frac{m^3}{s^3}}$

Heat of combustion H and converting m/min to m/s (18000/60) = 300: $I = Hwr = 300 \times TFC \times ROS = 300 \times (CFC + SFC) \times ROS$

 $= 19.6(300(CFC+SFC)ROS) / 1.2T[(v/3.6) - (R/60.)]^{3}$

 $ROS = a [1 - e^{-b \times ISI}]^c$ R = ROS/60

 $CFC = CFB \times CFL$ and $SFC = 5[1.0 - e^{-.0164BUI}]^{2.24}$

 $= \underline{19.6 (300((CFB \times CFL) + 5[1.0 - e^{-.0164BUI}]^{2.24}) a[1 - e^{-b \times ISI}]^{c})}_{1.2(T+273.16)[(v/3.6) - R]^{3}}$

WFBS S491 2022

Byram's Convection Number At-home Exercise

5

 Use the last equation on the previous slide and the given values on the previous 2 slides to complete the calculations for:

Ground level

300m above ground level

Contact information

Richard Carr

Natural Resources Canada / Canadian Forest Service

Richard.Carr@canada.ca

825-510-1265

780-710-3147 (cell, during Covid)

WFBS S491 2022