S589: Venting

1

2

3

Original material developed by Mike Pistilli Planning and Information Coordinator, Northwest Region Aviation, Forest Fire, and Emergency Service, Ontario

Adapted for the 2022 WFBS Course, S589 Module Richard Carr, Natural Resources Canada – Canadian Forest Service

WFBS \$589 2022

Heading: Arial 32pt centred, vertical=0.5cm

Section Title: Corbel 4opt centred hor.

Text: Level 1 = Calibri 28 pt

Text level 2 = Calibri 24pt

WFBS \$589 2022

Objectives

Describe venting and its effects on fire behaviour

• Calculate the venting index by calculating the atmosphere's mixing height and winds

WFBS S589 2022

Venting

• The ability of the lower atmosphere to mix and transport smoke through the boundary layer (normally considered to extend up to 3000', or 1000m AGL)

Can be higher, especially in unstable air masses

• During a surface inversion the ability of the atmosphere to disperse smoke is virtually zero

WFBS S589 2022

Ventilation Index

• What is it?

 It is a crude estimate of how well smoke released into the atmosphere will be carried away from the surface during the afternoon –i.e. will the valley be cleaned up quickly?

• How is it calculated?

• Using the mixed layer depth (m) multiplied by the wind speed (m/s).

WFBS \$589 2022

Ventilation Index

CAUTION!

• It is not related to calculation of the Air Quality Index

- It was not designed for small fires in cold valleys, it was designed for large fires on level ground.
- Clear and cold winter days are usually poor venting days.
- It has little to do with the way a plume behaves near the ground.

WFBS S589 2022

Ventilation Index

- High mixing heights usually allow for the dispersion of smoke through a deeper part of the atmosphere
- Burn operations are more successful when dispersion is good
- Categorized as Poor, Fair, or Good

8

WFBS \$589 2022

mixing layer

Calculate Venting

 Plot the temperature 										
profile on the diagram	Minisonde sounding for Oct 20, 2017 at 17 UTC									
	Time[min:sec]	P[hPa]	T[C]	RH[%]	Wsp[km/h]	Wdir[Grd]	Lon (-)	Lat (-)	Altitude[ft]	GeoPot[ft']
 Max temperature for the 	0:00	956.2	17.4	57	6	113	-93.0004	49.0539	0	0
	0:16	944	15.3	58.8	14.8	115.8	-93.001	49.0546	358.9	357.3
day was 24C	0:40	926.5	15.1	61.5	22	161.6	-93.0015	49.0558	881.9	874
	1:04	914	18.6	53.9	32.3	174.8	-93.0015	49.0576	1260.9	1254
 Calculate the mixing height 	1:28	903.9	18.9	47.8	38.1	175.6	-93.0017	49.0599	1570.3	1562.4
	1:52	895.2	18.8	48	43.5	182.8	-93.0018	49.0626	1845.8	1836.2
by following the dry	2:08	889.5	19	47.2	47.1	190.2	-93.0014	49.0644	2025.9	2015.6
adiabatic from the may	2:32	881.2	19.9	43.2	50.3	202.8	-93.0001	49.0673	2287.7	2277.5
adiabatic from the max	2:56	872.8	19.8	41.7	55	209.3	-92.9979	49.0703	2560.1	2548
tomp until it crosses the	3:20	864.3	19.3	42	59.9	211.5	-92.9951	49.0734	2836.3	2823.5
temp until it crosses the	3:36	858.8	19	42.1	63.1	211.7	-92.9931	49.0756	3014.6	3001.1
temp profile										
• Calculate the average winds within the mixing layer	WFB	S S58	9 202	12						

